Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice

نویسندگان

  • Jaques Belik
  • Yulia Shifrin
  • Erland Arning
  • Teodoro Bottiglieri
  • Jingyi Pan
  • Michelle C. Daigneault
  • Emma Allen-Vercoe
چکیده

Tetrahydrobiopterin (BH4) is a cofactor of a number of regulatory enzymes. Although there are no known BH4 exogenous sources, the tissue content of this biopterin increases with age in GTP cyclohydrolase 1-deficient hyperphenylalaninemia-1 (hph-1) mice. Since certain bacteria are known to generate BH4, we hypothesize that generation of this biopterin by the intestinal microbiota contributes to its tissue increase in hph-1 adult mice. The goal of this study was to comparatively evaluate hph-1 mice and wild-type C57Bl/6 controls for the presence of intestinal BH4-producing bacteria. Newborn and adult mice fecal material was screened for 6-pyruvoyltetrahydropterin synthase (PTPS-2) an enzyme only present in BH4-generating bacteria. Adult, but not newborn, wild-type control and hph-1 mouse fecal material contained PTPS-2 mRNA indicative of the presence of BH4-generating bacteria. Utilizing chemostat-cultured human fecal bacteria, we identified the PTPS-2-producing bacteria as belonging to the Actinobacteria phylum. We further confirmed that at least two PTPS-2-producing species, Aldercreutzia equolifaciens and Microbacterium schleiferi, generate BH4 and are present in hph-1 fecal material. In conclusion, intestinal Actinobacteria generate BH4. This finding has important translational significance, since manipulation of the intestinal flora in individuals with congenital biopterin deficiency may allow for an increase in total body BH4 content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...

متن کامل

Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid.

It has been shown that endothelial NO synthase (eNOS) uncoupling occurs in hypertension and atherosclerosis. However, its causal role in vascular pathogenesis has not been characterized previously. Here, we challenged eNOS preuncoupled hyperphenylalaninemia (hph)-1 mice (deficient in eNOS cofactor tetrahydrobiopterin biosynthetic enzyme GTPCHI) with angiotensin II (Ang II; 0.7 mg/kg per day, 14...

متن کامل

Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice.

(6R)-5,6,7,8-Tetrahydro-biopterin (H(4)B) is essential for the catalytic activity of all NO synthases. The hyperphenylalaninemic mouse mutant (hph-1) displays 90% deficiency of the GTP cyclohydrolase I, the rate-limiting enzyme in H(4)B synthesis. A relative shortage of H(4)B may shift the balance between endothelial NO synthase (eNOS)-catalyzed generation of NO and reactive oxygen species. The...

متن کامل

Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury.

Decreased levels of tetrahydrobiopterin (BH4), an absolute cofactor for nitric oxide synthase (NOS), lead to uncoupling of NOS into a superoxide v. nitric oxide producing enzyme, and it is this uncoupling that links it to the development of vascular disease. However, the effects of in vivo deficiency of BH4 on neointimal formation after vascular injury have not been previously investigated. Hph...

متن کامل

Development of Methodology and Data Acquisition

Infantile hypertrophic pyloric stenosis (IHPS): A study of its pathophysiology utilizing the newborn 1 hph-1 mouse model of the disease 2 3 Running Title: Rho-kinase and infantile pyloric stenosis 27 28 29 30 31 Abstract 33 Infantile hypertrophic pyloric stenosis (IHPS) is a common disease of unknown etiology. The 34 tetrahydrobiopterin (BH4)-deficient hph-1 newborn mouse has a similar phenotyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017